Jump to content
Tuts 4 You

Big Cube Of Dots...


Teddy Rogers

Recommended Posts

Teddy Rogers
Posted

Here is a little intro (with source code) of dots formed in to a rotating cube.

;	   Big Cube Of Dots
; by Rebels
; for BP 2007
; coded by lord Kelvin
org 0x100 ; .COM mov al,0x13 ; \ MCGA
int 0x10 ; / mov dx,0x3C9 ; \ colors[ i ] = RGB( -i / 2, -i / 3, -i / 4 );
mov cx,256 ; | i = 256 ... 1
pal: mov ax,cx ; |
neg ax ; |
shr al,3 ; |
out dx,al ; |
shr al,1 ; |
out dx,al ; |
shl al,2 ; |
out dx,al ; |
loop pal ; / fldz ; st0=a; clear z buffer, with fade
here: mov ch,0xFA ; do loop 320*200 times
mov di,zbuf ; in zbuffer
fade: mov al,[di] ; al = current z
cmp al,8 ; \ if( al < 8 ) al = 0;
jna nofade ; | else al -= 8;
sub al,8 ; | current z = al
jmp made ; |
nofade: xor al,al ; |
made: stosb ; /
loop fade ; ...
; loop through all points of the cube
points: mov ax,cx ; \ ax = cx / 40;
xor dx,dx ; | dx = cx % 40;
mov bx,40 ; |
div bx ; /
sub dx,20
push dx ; push firstt coordinate
xor dx,dx ; \ dx = ax % 40;
div bx ; / ax = ax / 40;
sub ax,20
sub dx,20
push ax ; push second coordinate
push dx ; push third coordinate mov bx,sp ; address stack with bx imul dx,dx ; \ if( x * x + y * y + z * z < Max / 2 * Max / 2 * 8 / 5 &&
imul ax,ax ; | x * x + y * y + z * z > Max / 2 * Max / 2 / 3 )
add dx,ax ; | do not put point in zbuffer
mov ax,[bx+4] ; |
imul ax,ax ; |
add ax,dx ; |
cmp ax,20*20/3 ; |
jb sphere ; |
cmp ax,20*20*8/5; |
jb no ; /sphere: fild word [bx+4]; \ load coordinates of current point
fild word [bx+2]; |
fild word [bx] ; / call turn ; :D
call turn ; :D fistp word [bx] ; \ di = ( y + 100 ) * 320;
add word [bx],100; |
imul di,[bx],320; /
fistp word [bx] ; \ di += x;
add di,[bx] ; /
add di,160+zbuf+16; centerize.
fistp word [bx] ; \ ax = z + 128
mov al,128 ; |
add ax,[bx] ; /
cmp al,[di] ; \ if ax is less than value in z buffer - do nothing
jna no ; | else replace value
stosb ; /
no:
add sp,6 ; return stack to normal state
loop points ; while( --cx ) goto points; mov di,zbuf+320 ; \ Simple blur from my intro Cheshire Cat.
mov cx,0xFA00-320; |
lust: xor ah,ah ; |
mov al,[di-320] ; |
add al,[di-1] ; |
adc ah,ah ; |
add al,[di+1] ; |
adc ah,0 ; |
add al,[di+320] ; |
adc ah,0 ; |
shr ax,2 ; |
stosb ; |
loop lust ; /; show cube
push es ; preserve ex
mov si,zbuf ; si = from
xor di,di ; di = to
push 0xA000
pop es
dec cx ; cx = 0xFFFF
rep movsb ; copy z buffer to the screen pop es ; recall es fiadd word [two]; change angle in ax,0x60 ; \
dec ax ; |
jne here ; |
ret ; / Sorry, no esc & exit support.two dw 88; void turn( float &x, float &y, float a ); 25b
; st0=x, st1=y, st2, st3=a.
turn: fld st3 ; st0=a, st1=x, st2=y, st3=z, st4=a
fsincos ; st0=cos(a), st1=sin(a), st2=x, st3=y, st4=z, st5=a
fmul st0,st2 ; st0=x*cos(a), st1=sin(a), st2=x, st3=y, st4=z, st5=a
fxch st1 ; st0=sin(a), st1=x*cos(a), st2=x, st3=y, st4=z, st5=a
fmul st0,st3 ; st0=y*sin(a), st1=x*cos(a), st2=x, st3=y, st4=z, st5=a
faddp st1,st0 ; st0=y*sin(a)+x*cos(a)[x'], st1=x, st2=y, st3=z, st4=a
fld st4 ; st0=a, st1=x', st2=x, st3=y, st4=z, st5=a
fsincos ; st0=cos(a), st1=sin(a), st2=x', st3=x, st4=y, st5=z, st6=a
fmulp st4,st0 ; st0=sin(a), st1=x', st2=x, st3=y*cos(a), st4=z, st5=a
fmulp st2,st0 ; st0=x', st1=x*sin(a), st2=y*cos(a), st3=z, st4=a
fxch st1 ; st0=x*sin(a), st1=x', st2=y*cos(a), st3=z, st4=a
fsubp st2,st0 ; st0=x', st1=y*cos(a)-x*sin(a)[y'], st2=z, st3=a
fxch st2 ; st0=z, st1=y', st2=x', st3=a
fld st3 ; st0=a...
fsin ; st0=sin(a)...
fcos ; st0=cos(sin(a))
fadd st0,st0 ; !!! makes zoom from 1 to 2!
fmul st3,st0 ; \ mul by this koef all coordinates
fmul st2,st0 ; |
fmulp st1,st0 ; /
ret ; return
db 'lK' ; for lord Kelvin.
zbuf:

rbs_bp_cube.rar

The code is by Lord Kelvin...

Ted.

Posted

Impressive stuff.

The .asm file is larger than the .com!

Posted (edited)

There's a lill 256b-scene on www.256b.com :)

Here's another one, I had:

tube.rar

;  (
Edited by Ufo-Pu55y

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...