Jump to content
Tuts 4 You

About This File

The class of affine Boolean functions is rich enough to express constant bits and dependencies between different bits of different words. For example, the function is affine and expresses the invariant that the low bit (bit 0) of the variable x is true, that bit 1 of y is false, that the bits 4 and 7 of x and y coincide whereas bits 5 and 9 of x and y differ. This class of Boolean function is amenable to bit-precise reasoning since it satisfies strong chain properties which bound the number of times a system of semantic fixpoint equations need to be reapplied when reasoning about loops. This paper address the key problem of abstracting an arbitrary Boolean function to either a general affine function or a so-called affine function of width 2, when the function is represented as an ROBDD. Novel algorithms are presented for this task: one that manipulates Boolean vectors and another which is inspired by anti-unification. The speed and precision of both algorithms are compared on benchmark circuits, to draw conclusions on the tractability of affine abstraction.


User Feedback

Recommended Comments

There are no comments to display.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...